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Colony losses, including those induced by the colony collapse disorder, are an urgent 
problem of  contemporary apiculture which has been capturing the attention of  both 
apiculturists and the research community. CCD is characterized by the absence of  adult 
dead bees in the hive in which few workers and a queen remain, the ratio between the 
brood quantity and the number of  workers is heavily disturbed in favor of  the former, 
and more than enough food is present. Robbing behavior and pests usually attacking 
the weakened colony do not occur. In the present paper, the causes of  the emergence 
of  this problem are discussed, as well as the measures of  its prevention.
The following factors, which lead to colony losses, are analyzed: shortage of  high-quality 
food (pollen and honey); infestation with parasites, primarily with Varroa destructor, and 
mixed virus infections; bacterial infections (American and European foulbrood), fungal 
infections (nosemosis and ascosphaerosis) and trypanosomal infections (lotmariosis); 
and, finally, general management of  the apiary.
Certain preventive measures are proposed: (1) providing ample high-quality forage and 
clean water, (2) avoiding sugarisation, i.e. superfluous use of  sugar syrup, (3) meeting 
the nutritional needs of  the colony, (4) when feeding bees, taking care of  the timing 
and the composition of  diet, avoiding pure sugar syrup which in excessive quantities 
may induce energetic and oxidative stress, (5) when there is a shortage of  natural feed 
– honey in the brood chamber – use sugar syrup with natural/artificial supplements 
to avoid protein starvation, (6) organized control of  V. destructor in the colonies is 
obligatory due to its vector role, and (7) compliance with hygienic and sanitary measures 
and principles of  good apiculture practice and management in apiaries. To conclude, all 
preventive measures are feasible in compliance with rules and regulations concerning 
regular spring and autumn bee health monitoring by licensed veterinarians, who can 
propose adequate treatments if  necessary.
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IntroductIon

Given their contribution to pollination, managed honey bees (Apis mellifera) are far 
more respected for this activity than for the production of  honey and other products 
[1, 2]. Thus, it is understandable that substantial losses of  bee colonies in the United 
States and Europe keep startling beekeepers and scientists, especially because there is 
no agreement on the definite cause(s) of  this syndrome. Extensive research has shown 
that no single factor can be accused of  the losses, which lead to seemingly the only 
possible conclusion that multiple stressors must be involved, such as loss of  forage, 
pathogens, parasites, agropesticides and incorrect beekeeping practices [3-10]. Thus, it 
is very hard to propose a single solution which could be most effective [11]. Historical 
data prove that there were huge losses in the past, although they did not generate such 
avid interest. Even though tremendous losses do exist throughout the world, their 
causes vary with time and place. Many international attempts at understanding the 
causes and occurrence of  bee losses were made. Recently, two independent groups of  
scientists conducted extensive studies. A two-year monitoring of  nearly 6,000 apiaries 
in 17 European countries revealed that winter losses, ranging widely from 2% to 32%, 
were frequently followed by seasonal losses [12]; the COLOSS questionnaire filled 
out by 14,813 beekeepers from 27 European countries, Algeria, Israel and Mexico 
revealed that in winter 2016/2017 out of  425,762 colonies, 5.1% suffered unsolvable 
queen problems and 14.1% failed to survive the winter [13]. Natural disasters killed 
another 1.6% of  honey bee colonies, which added to a total of  20.9% colony losses. 
The losses varied between countries and were considerably higher in apiaries owned 
by beekeepers who had small numbers of  colonies. Analysis detected that migratory 
beekeeping did not affect significantly the winter loss, but had some influence in 
several countries [13].
Because of  the multifactorial nature of  colony losses, it is extremely complicated to 
conduct controlled reproducible research on the influence of  factors involved [6]. 
Despite the steep decrease in the numbers of  managed bee colonies in Europe (25% 
in central Europe from 1985 to 2005) and in North America (59% from 1947 to 2005), 
globally there was a significant rise in their number by approximately 45% (1961-
2008), owing to the enormous increase in China and Argentina, for instance [6]. Thus, 
it was suggested that colony losses should be considered throughout the year, rather 
than taking into account those happening in winter only. 
Colony losses in general should not be equated with a specific phenomenon known 
as colony collapse disorder – CCD [7], that was introduced and described by van 
Engelsdorp et al. [14] as a condition manifested in sudden bee death and the absence 
of  adult dead bees, both inside and in front of  the hive. Most frequently, there is a 
queen and few (a handful) workers which have survived. There is a huge quantity 
of  brood, which is disproportional to the number of  worker bees. There are ample 
food reserves (honey and bee bread). It is also characteristic that in the hives robbing 
behavior and invasion by common pests (wax moths and small hive beetle) appear 
much later [11, 14-16]. 
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In compliance with the European Food Safety Authority – EFSA [17], the most 
frequent causes of  colony losses are:
• Shortage of  high-quality food (pollen and honey),
• Parasitic infestations, primarily by Varroa destructor and mixed virus infections,
• Bacterial infections (American and European foulbrood), fungal (nosemosis and 

ascosphaerosis) and other infections,
• General management in the apiary.

Shortage of high-quality food

Global climate changes, environmental pollution and “chemisation” in all human 
activities, especially in agriculture, lead to disturbances in the ecosystem, plant 
production, and production of  high-quality food intended for bees. Global changes 
in the flowering dynamics, and the quantity and quality of  pollen and nectar [18], as 
well as the practice of  growing monocultures (corn), which are of  low quality for bees, 
additionally increase the risk of  protein starvation in bees [19-21]. In the last several 
decades, the diversity of  melliferous plant species changed globally, and in Serbia alone 
Stachys annua disappeared, and some others have drastically decreased nectar and pollen 
production, e.g. Trifolium repens, T. pratense, Melissa officinalis, Thymus serpyllum and Mentha 
piperita [22]. Moreover, intensive pesticide use decreases the production of  pollen, 
which is transformed into quality bee bread, the main protein source for 3-18-day-old 
bees and older open brood [18, 22, 23]. Further, decline in the number of  grazing 
animals (primarily sheep and goats), and, consequently, decreased manure production, 
leads to impoverished land, significantly lower reproduction of  melliferous plants. 
Pollen quality changes throughout the season, the best being provided by early 
blooming plants: Corylus avellana, Salix alba and S. nigra, Helleborus odorus, Galanthus 
nivalis, Viola spp., Laminum spp., fruit trees, Taxacarum spp., Poaceae family etc. 
Nevertheless, the number of  hives has been on the increase, owing to the needs of  
people to contribute to their household income, which led to the overpopulation 
of  certain areas with hives and shortage of  food for bees [10]. In attempts to gain 
growth in earnings, beekeepers neglect the bees’ needs: they deprive them of  honey 
even from brood chamber, which belongs exclusively to the bees and is an ideally 
balanced, energy and protein-rich food, the most important factor for wintering and 
fast spring development of  the brood and the colony as a whole. By mixing the honey 
from brood and honey chambers beekeepers harm both the bees and themselves. Thus, 
bees remain without the best energy and protein-rich food,  which the beekeepers 
try to make up for by feeding the bees with sugar syrup. However, it provides only 
additional energy, influences negatively the development and survival of  the colony, 
disturbs the structure of  the winter cluster, leads to energy and oxidative stress and 
decline in the immune system, and intensifies pathogen development and reproduction 
[14, 18, 20, 24-31]. This leads to the disturbance of  temporal polyethism and absence 
or fewer sanitary bees (in-hive 12-18-day old bees), that is, to decreased hygienic, and 
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grooming behavior [32-39]. Temporal polyethism is of  utmost importance. Worker 
bees specialized in performing various tasks communicate closely, which provides 
colony survival, but also enables easier pathogen distribution in the colony (Figure 1). 
In addition, in inadequately fed bee colonies a decrease in the numbers of  workers and 
drones, and lower vitality and resistance to pathogens (notably to N. ceranae) are often 
noticeable [40]. 

Moreover, honey taken from brood chambers may contain residues of  various 
preparations (amitraz, coumaphos, cymiazole hydrochloride, flumethrine, fluvalinate, 
dicyclohexylamine and fumagillin) which contaminate the honey directly (used in 
autumn and winter-spring treatments), or indirectly, from already contaminated wax. 
This honey is not eligible for human consumption because antibiotic and pesticide 
residues may exert various genotoxic effects [41-48].

Infestation with Varroa destructor and mixed virus infections

Varroa destructor, an obligate parasite of  A. mellifera, poses the greatest threat to 
beekeeping. Due to the absence of  an efficacious control programme, infested bee 
colonies collapse in a 2-to-3-year period [49]. Together with the associated bee viruses, 
the mite is one of  the main causes of  winter losses of  bee colonies [7, 50-53]. Recently, 
it has been detected that Varroa feeds on the fat body of  the larvae and adult bees 
[54], rather than exclusively on haemolymph, as previously considered [49, 55, 56]. 
Moreover, the reproductive performance was better in mites fed on fat body than in 
those which consumed haemolymph [54]. 
V. destructor harms the bees directly, by exhausting them due to the disturbances they 
make in their metabolic processes, notably that of  proteins [57], and indirectly, acting 
as a vector and/or activator of  bee viruses [52, 58-60]. The mite and the Deformed 
Wing Virus-DWV together produce the most deleterious effect on the bees, which 

Figure 1. Flow of  food and water in the honey bee colony and 
communication between different bee castes
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leads to the reduction in their lifespan and have been one of  the most common causes 
of  colony losses across the globe over the past 50 years [55, 56, 61, 62]. Nevertheless, 
other viruses or their combination (Acute Bee Paralysis Virus - ABPV or Acute-
Kashmir-Israeli complex - AKI) may also cause colony losses together with Varroa 
mites as drivers that increase viral titers [51, 52, 63, 64]. 
Investigating into the mechanisms of  synergistic actions between V. destructor and 
DWV, Nazzi et al. [62] proved that the mite is capable of  destabilizing the dynamics 
of  DWV development in the bees’ body and lead to the transformation of  the virus 
into a fast-replicating killer, which reaches lethal levels at the end of  the season. The 
destabilization of  a strong down-regulation of  the transcription nuclear factor kappa 
B (NF-kB) leads to immunosuppression [62] and the disturbance of  various levels 
of  immunity regulated by this factor, such as the synthesis of  antimicrobial peptides, 
haemocyte aggregation at the sites of  injuries, melanisation and antiviral mechanisms 
of  defense [65]. It is considered that the immunosuppressive effect, primarily owing 
to viruses, increases the negative impact of  the transcriptional profile of  several 
immune genes in the bee. Moreover, in the absence of  viruses, Varroa mites do not 
influence the expression of  dorsal-1A gene, an indicator of  immunosuppression, 
unlike DWV, which produced the largest decrease in the expression of  this gene [62]. 
This immunosuppressive activity is explained as part of  the strategy used by DWV 
to conquer the central components of  the host’s antiviral immunity, thus providing 
conditions for covert infection. However, any environmental stressor (e.g. pesticides 
or poor nutrition) may disturb the delicate, balanced relationship between the viral 
pathogens and the bees’ defense mechanisms, leading to the activation of  the response 
through NF-kB and intensive virus replication in bees in which the infection was 
covert until then. The most common final consequence of  fast virus replication is the 
collapse of  the bee colony [61, 62, 66]. Further investigation into the mechanisms of  
interaction in the mite–virus complex and the induction of  honey bee colony losses 
revealed the existence of  mutualistic symbiosis between Varroa parasites and DWV, 
which is aimed at defeating the immune barriers of  the host [55]. 
Additional research into the bees’ response to simultaneous Varroa infestation and 
DWV infection proved that honey bees are able to promptly produce high immune 
and homeostatic response, which does not last long and is followed by downregulation 
of  these pathways, rendering the bees susceptible to extensive virus replication [56]. 
Fine et al. [67] reported that even inert substances in agrochemicals may also add to 
some negative effects on bees, including increased virus-induced mortality. Herbicides, 
although designed to inhibit weed growth, limit the availability of  floral resources and 
adversely affect the bees` nutritional status, indirectly influencing the outcome of  bee 
virus infections.
In Serbia, the first molecular research into the presence of  bee viruses was conducted 
on 11 apiaries [68] including 55 honey bee colonies from different regions. Real-time 
RT-PCR detected DWV in all apiaries and ABPV in 10 out of  11. Similar, but more 
extensive research was done by Cirkovic et al. [69], who investigated into the prevalence 
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DWV, Chronic Bee Paralysis Virus (CBPV), ABPV and the Sacbrood Virus (SBV) in 
colonies of  different strength located in five regions of  Serbia (Figure 2). The analyses 
detected at least one virus in 87.33% of  the colonies. Single infection was found in 
28.67% colonies (21.33%, 4.00%, 2.67% and 0.67% in cases of  DWV, ABPV, SBV 
and CBPV, respectively). In the majority of  them (58.66%) more than one virus was 
found. The most prevalent was DWV (74%), followed by ABPV, SBV and CBPV (in 
49.30%, 24.00% and 6.70% colonies, respectively). Phylogenetic studies revealed that 
the honey bee viruses detected in Serbia were 93–99% identical with those deposited 
in GenBank. 

Considerable numbers of  beekeepers in Serbia refer to the Laboratory for genetics 
of  domestic animals, wildlife and bees (Department of  Biology, Faculty of  Veterinary 
Medicine) each year, requesting analyses of  samples taken from diseased or dead 
colonies. In these bees, the prevalence of  viruses in the five-year period (2014-2018) 
was: DWV 73.12-87.16%, ABPV 61.54-81.45 and CBPV 58.82-64.22% (Figure 3). The 
history of  diseases, based on the beekeepers’ claims, most frequently pointed to: (1) 
inadequate anti-varroa treatment, or its absence; (2) depriving bees of  large quantities 
of  honey and feeding them on sugar, and (3) wintering bees on sunflower honey 
(which is often last produced in the season and contaminated with agropesticides).

Figure 2. Prevalence patterns of  investigated viruses in honey bee colonies in five regions of  
Serbia [69]
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It should be emphasized that the presence of  virus infections of  the brood and adult 
bees is influenced by apiculture technology (conventional vs. traditional). There are 
certain regions where bees are still kept in a traditional way, in primitive hives made 
of  wicker – so-called trmka hives. Research conducted on the Pester Plateau, Serbia, 
showed that such beehives provide significantly better conditions for maintenance of  
bee health and their resistance to pathogens [70]. Seemingly healthy colonies kept for 
commercial purposes and those in primitive hives were screened for bee brood virus 
(SBV) and adult bee viruses (Figure 4). In traditional hives, SBV was detected in 33.33% 
samples and in 96.67% in commercial colonies. Furthermore, occurrence of  viruses in 
adult bees was significantly higher in commercial colonies (Table 1). Obviously, in the 
brood and adult bees reared in a traditional way, in primitive hives, the prevalence of  all 
the viruses monitored was up to 33.33%, without clinical symptoms, which is within 
the limits of  normal distribution of  viruses in bee colonies in natural conditions.

Figure 3. Presence of  N. ceranae, DWV, ABPV and CBPV in bees analyzed at the Laboratory 
for Genetics of  Domestic Animals, Wildlife and Bees, Department of  Biology, Faculty of  
Veterinary Medicine (2014-2018)

Figure 4. Amplification plots following real-time PCR demonstrating the detection of  viruses 
in adult bees. Lines 1-4 - positive controls: 1) Blue line - for ABPV; 2) Red line - for CBPV; 3) 
Orange line -for DWV; 4) Green line - for SBV; Dashed lines (5-8) – samples, correspondingly. 
Dotted lines (9-12) – negative controls, respectively. Single replicates are shown for clarity [70].
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Table 1. The prevalence of  causative agents of  bee diseases in commercial and traditionally 
reared bee colonies (based on the detection of  their nucleic acids): 1. P. larvae, 2. M. plutonius, 
3. A. apis, 4. Sacbrood virus, 5. Acute bee paralysis virus, 6. Chronic bee paralysis virus, 7. 
Deformed-wing virus; 8. ∑ N=120; 9. ∑ N=24  [70].

Bee pathogens 
Hives

P 
Commercial8 (%) Traditional-trmka9 (%)

Brood pathogens

AFB1 16.67 0.00 <0.05

EFB2 0.00 0.00 >0.05

CB3 15.83 0.00 <0.05

SBV4 96.67 33.33 <0.01

Adult bee pathogens

ABPV5 83.33 33.33 <0.01

CBPV6 100.00 33.33 <0.01

DWV7 100.00 33.33 <0.01

Legend: 1. P. larvae, 2. M. plutonius, 3. A. apis, 4. Sacbrood virus, 5. Acute bee paralysis virus, 6. Chronic 
bee paralysis virus, 7. Deformed-wing virus; 8. ∑ N=120; 9. ∑ N=24 [70]

In order to prevent huge colony losses due to mixed infections with Varroa and viruses, 
it is necessary to regularly control the mite, the vector of  various pathogens [55, 56, 
61, 62, 64, 69, 71, 72] 
There are various means of  V. destructor control, which are successful to a varying 
extent. These methods are divided into biotechnical, chemical – use of  synthetic 
‘hard’ acaricides and ecological – use of  ‘soft’ acaricides [49, 73], but may also be 
used in combination [74]. Long-lasting work of  Stanimirović et al. [75] resulted in 
the development of  Varroa-control strategy applicable in the Balkans (Figure 5). 
Biotechnical methods are time-consuming and insufficiently efficacious [74-77]. The 
use of  ‘hard’ acaricides are followed by the following issues: (1) emergence of  resistant 
mites, mainly to pyrethroids - fluvalinate and flumethrin [78-80], and (2) residues in 
all hive products: highest concentrations were proven in wax and propolis, lower in 
pollen and bee bread, and lowest in honey [49, 79, 81-84]. The most often detected 
varroacides in beeswax, pollen and bee bread are fluvalinate, coumaphos, amitraz and 
bromopropylate [84-89] and chlorfenvinphos in wax and bee bread samples from 
Spain [90]. Given that wax is a hive constituent which takes longest to be renewed, 
pesticides which remain in the hive may lead to the so-called ’toxic home syndrome’. 
This problem cannot be solved by wax replacement because residues of  lipophilic 
acaricides remain in beeswax even after recycling [89]. Finally, synthetic acaricides 
may be harmful to bees and affect their reproductive traits and behavior, if  not used 
correctly [43, 46, 48, 91, 92].
As a consequence of  all the diagnosed problems arising from the use of  synthetic 
acaricides, those which are natural-product-based, for example, organic acids and plant 
extracts, have come into widespread use [49, 73, 93]. Their efficacy has been tested 
for more than two decades [73, 93-96]. Formic, oxalic and lactic acids are organic 
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acids (OA) in use for the control of  Varroa mites. Among plant extracts, essential 
oils (EO) and their components are by far the most studied for varroacide activity 
[75, 84]. General advantages of  natural compounds, both OA and EO, are a low risk 
of  residues and accumulation in bee products, and the low probability of  eliciting 
resistance after repeated treatments [49]. If  used properly, their residues are low and 
the image of  honey and other bee products as natural, healthy and clean remain 
untarnished. However, OA and EO have significant disadvantages: their efficacy is 
insufficient and depends on climatic and in-hive conditions, and means of  application 
[49, 75, 93]. Some natural preparations exert side effects on bees and/or their brood 
[95, 97]. Luckily, some plant-derived formulations, rather effective, but without 
unwanted effects on colony development and productivity have been used recently 
[73, 96]. To sum up, neither of  the methods of  mite control, which has been used and 
investigated until now, can meet all these criteria: be safe for bees, highly efficacious 
against Varroa mites and easy to use. However, successful Varroa control is achievable 
if  done in compliance with regulations concerning regular spring and autumn bee 
health monitoring by licensed veterinarians, who can propose adequate treatments.

Recently, in scientific circles, an idea was pushed forward that various lithium compounds 
may be used in Varroa control. Research carried out by Ziegelmann et al. [98] suggests 
that lithium salts may produce a marked acaricide effect. Our recent research proved 
the efficacy of  lithium-salt-based supplements (Figure 6A), especially those containing 
lithium citrate in various concentrations. Results showed that concentrations of  5 and 
7.5 mM exerted a powerful acaricide effect, not affecting bee mortality (Figure 6A). 
In field experiments, the tested concentration (7.5 mM) had a satisfactory acaricide 
effectiveness (Figures 6B and 6C).

Figure 5. Varroa control – general strategy in Serbia
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Bacterial infections (American and European foulbrood) 
and fungal diseases (ascosphaerosis and nosemosis)

Bacterial diseases of  special interest for the honey bee brood are American and 
European foulbrood [99]. Besides these bacterial diseases, an invasive and destructive 
mycosis caused by Ascosphaera apis should be considered as a contributor to honey 
bee health weakness [100]. Aspergillus spp., a cosmopolitan fungus, deserves greater 
attention because of  its high virulence towards honey bee larvae and the ubiquity of  
its spores [101].
American foulbrood (AFB) is considered to be a fatal bee brood disease [50]. In 
some countries it is frequent (e.g. 5-10% bee colonies in Germany were found to 
be infected without symptoms) and causes considerable economic losses to the 
beekeeping industry. Clinical signs and the course of  AFB disease vary, depending on 
the Paenibacillus larvae genotype, and the strength and behavioral defense mechanisms 
of  bee colonies. The identification of  P. larvae genotypes (made with rep-PCR) is 
important because of  the differences in virulence and prognosis: genotypes ERIC 
I and II do not kill larvae in the early stage, but only after the comb cells are sealed, 
which is why hygienic bees cannot clean the diseased brood effectively and the disease 
outbreaks, i.e. clinical symptoms become visible [102]; genotypes ERIC III and IV are 
highly virulent towards larvae, which is why the majority of  them die before the cells 
are sealed, and hygienic bees clean the detritus and the classical disease symptoms are 
most often missing. These P. larvae genotypes differ in germination ability, resistance 

Figure 6. A) Anti-varroa effect of  different lithium chloride and lithium citrate concentrations 
in a seven-day cage experiment; B) Anti-varroa effects of  7.5 mM lithium citrate. K- Negative 
control group (non-treated); Li – Group treated with lithium citrate; K+ Positive control 
(amitraz treated); C) Mites fallen following lithium citrate treatment. 
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to different temperature treatment and storage, which is why their genotyping should 
be checked, as part of  standard laboratory protocols [103]. 
Generally, European foulbrood (EFB) is spread in honey bees worldwide, that 
causes serious losses of  brood and colony collapse [104]. For example, in Switzerland 
and Great Britain, EFB has posed great problems [105, 106] due to the failure of  
the sanitary measures applied, which led to the necessity of  solving the problem of  
the spreading of  M. plutonius [50]. Apart from classical microbiological methods of  
detection, certain molecular analyses for the conformation of  M. plutonius have been 
developed based on PCR techniques [70, 106, 107]. 
Chalkbrood disease is often neglected when looking for the causes of  colony losses, 
owing to the fact that the presence of  A. apis is easily recognized and the infection 
diagnosed [108]. A. apis causes high brood mortality and significant decline in bee 
population in the hive. Strong colonies solve the problem by recruiting high numbers 
of  hygienic worker bees, which easily recognize and get rid of  “calcified” larvae, so the 
majority of  these colonies heal in a short period of  time [109]. However, chalkbrood 
disease may contribute to colony losses, especially those compromised by various 
etiological agents. The emergence of  these diseases depends also on beekeeping 
techniques [12, 70]. 
Research was conducted on the Pester Plateau, Serbia [70] on seemingly healthy 
colonies kept in a traditional way, in primitive hives, and those in commercial hives. 
The colonies were screened for P. larvae, M. plutonius and A. apis (Figure 7). Traditional 

Figure 7. A) Amplification plots following real-time PCR demonstrating the detection of  
M. plutonius in brood samples. Continuous line (1) – positive control for M. plutonius; 
Dotted lines, blue and purple (2 and 4) – samples; Dashed line (3) – negative control [70]; B) 
Visualization of  the PCR amplification products of  P. larvae isolates. M – 100 bp ladder DNA 
marker; C+ positive control; 1-4 – samples; C- negative control. The sizes of  the positive bands 
are indicated on the left [70]; C) Gel electrophoresis of  DNA amplification products from the 
fungal isolates A. apis. M, 50 bp ladder DNA marker; C+, positive control; C- negative control; 
1- 2) samples. The sizes of  the positive bands are indicated on the right [70].
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beehives provided significantly better conditions for maintenance of  bee health and 
their resistance to pathogens: they were free from bacterial or fungal brood pathogens. 
By contrast, in commercial colonies P. larvae (16.67%), A. apis (15.83%) were detected, 
but M. plutonius was not found. Two thirds of  traditionally kept colonies were without 
any of  the bee pathogens checked, but not any of  those kept for commercial purposes 
was free from all pathogens (Table 1).
Nosemosis. Microsporidians and trypanosomatids and are the most abundant 
eukaryotic gut parasites of  honey bees [110-114] and have been correlated with 
increased colony losses, although their role is still controversial [115-118]. There 
are three microsporidian species which may infect A. mellifera: Nosema ceranae, most 
prevalent and globally distributed [116, 119],  N. apis, which prevails over N. ceranae 
only in cold climates [120-122], and N. neumanni, a recently described species, endemic 
in Uganda, causing low-level infection [123]. 
N. ceranae is thought to be a serious threat to the beekeeping industry, but dramatic 
colony losses were clearly attributed exclusively to N. ceranae infections in some regions 
only [124-126]. N. ceranae as a sole stressor showed suppressive effects on immune-
related genes (Figure 8) in laboratory experiments [127-129]. However, in all pieces of  
research there was a time-dependent inconsistence in gene expression. 

Figure 8. Expression levels of  genes for abaecin, hymenoptaecin, defensin, apidaecin and 
vitellogenin on day 12 after the infection with N. ceranae in groups treated with “BEEWELL 
AminoPlus”. Groups were infected with N. ceranae spores on 3rd day after emerging and 
treated with “BEEWELL AminoPlus” from 1st (I-BW1), 3rd (I-BW3), 6th (I-BW6) and 9th 
(I-BW9) day, while the control group (I) was infected with N. ceranae but not treated. Different 
letters denote significant differences between groups [129].
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It has been proven by molecular diagnostics that N. ceranae is a dominant microsporidian 
pathogen of  honey bees in Serbia [110, 111]. Among all bee samples collected from 
2000 onwards, only one (originating from 2008) was proven to be infected with N. 
apis, whilst all other positive bees were infected with N. ceranae [110, 111]. Thus, it 
became clear that N. ceranae has been present in Serbia since at least 2000, and could 
not be regarded as an emergent pathogen in this region. Due to the absence of  any 
molecular evidence that N. apis has ever been prevalent in Serbia, there is no ground 
for discussion about the replacement of  N. apis with N. ceranae. 
As regards the prevalence of  N. ceranae in Serbian honey bee colonies, it was continually 
high, ranging from 73 to 98% (2008-2012). The highest was always recorded in March 
and ranged from 94 (2008) to 98% (2010). Lower, but still considerable proportions of  
infected colonies were detected in October (76–87%) and June (73–91%), according 
to Stevanovic et al. [111]. Nevertheless, the features of  nosemosis type C caused by 
N. ceranae [130] in Spain (lack of  seasonality, the absence of  any clear symptoms and 
the inevitable collapse of  infected colonies if  not treated), have never been recorded 
in N. ceranae-infected bees in Serbia [111]. In fact (1) a seasonal pattern was affirmed 
in N. ceranae incidence in period 2008-2011; (2) the symptoms traditionally attributed 
to N. apis infection (faecal marks, dead and sick crawling bees) were observed in the 
majority of  N. ceranae-infected colonies; (3) no clear association between N. ceranae 
infection and colony losses was confirmed neither during the winter nor during the 
summer season [111]. As the symptoms of  nosemosis were found in both surviving 
and dead colonies, being even more frequent among the former, these could not 
be indicative of  colony losses. The same counts for some additional observations 
recorded in N. ceranae-infected colonies in winter: loose cluster in cold winter days 
(temperatures below −5°C) opposite to compact ones in non-infected colonies, and 
increased anxiety in bees at mild winter temperatures (0°C or slightly higher) manifested 
through an unusually high number of  bees on the hive entrance after sound disturbing 
[111]. In compliance with all these is the finding that in adult bees collected due to 
visible symptoms of  diseases and delivered to our laboratory the prevalence of  N. 
ceranae in a five-year period (2014-2018) was 92.31-97.71% (Figure 3). To conclude, N. 
ceranae infection in Serbian bees, in the absence of  other stressors, does not resemble 
nosemosis type C and exerts no marker indicative of  colony losses.
N. ceranae may be blamed for the decrease in the bees’ reproductive capacities and 
honey production [131]. Its impact was investigated in equalized colonies headed by 
queens of  different age (one-, two- and three-year old) having in mind that in the 
queen exhausted by N. ceranae infection the renewal of  the worker population might be 
compromised. Besides reproduction and productivity, in the three-year period (2009-
2012), N. ceranae was monitored and quantified (spore load per colony). Significantly 
higher reproductive and productive values were recorded in colonies headed by younger 
queens (Table 2). This may be explained with their higher capacity to compensate the 
effects of  N. ceranae infection, which gradually declines as they are getting older [131]. 
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Table 2. The influence of  N. ceranae spore loads on parameters of  reproduction and productivity 
in colonies with queens of  different age [131]

Parameter

ANOVA Bonferroni test

Age of  the queen 

One-year 
old queens/ 

Two-year 
old queens 

One-year 
old queens/ 
Three-year 
old queens 

Two-year 
old queens/ 
Three-year 
old queens 

F P p p p

Brood size/ N. ceranae 159.67 <0.001 <0.001 <0.001 0.404

Queen egg-laying rate / N. ceranae 106.42 <0.001 <0.001 <0.001 0.181

Total extracted honey / N. ceranae 201.90 <0.001 <0.001 <0.001 0.007

Winter honey stores / N. ceranae 142.69 <0.001 <0.001 <0.001 0.266

Far more frequently it was detected that N. ceranae and synergistic factors have 
deleterious effects on bees. For example, concurrent presence of  N. ceranae and viruses 
have been confirmed to be capable of  producing severe losses of  honeybee colonies 
[132-134], while combinations of  N. ceranae and pesticides were proved to increase 
the mortality of  bees and alter the expression of  immunity-related genes [135-138]. 
However, in the case of  N. ceranae and thiacloprid combination, only the higher 
pesticide dose elicited significant mortality in bees, since thiacloprid showed a negative 
impact on N. ceranae reproduction [139]. 
Neonicotinoids were most frequently investigated for their influence on honey bee 
survival, health, behavior, immunity and reproductive and productive performances. 
Although numerous studies failed to provide a consistent conclusion, mostly due to 
the discrepancy between laboratory and field tests [140, 141], recent investigations 
provided the evidence that neonicotinoids exert significant negative effects on the 
health and survival of  honey bees [142], their behavior [143], the reproductive capacity 
of  drones [144], and that at field concentrations they may impair the immune defense 
[145, 146]. Comprehensive assessments of  risks for bees by exposure to pesticide 
residues indicated the highest risk of  contact exposure to pyrethroid and neonicotinoid 
residues via contaminated pollen. Moreover, neonicotinoids pose much higher risks 
in combination with ergosterol biosynthesis-inhibiting (EBI) fungicides because 
of  their synergistic interactions [5, 147, 148], or in-hive miticides - tau-fluvalinate, 
coumaphos and fenpyroximate [149]. One of  EBI fungicides is prochloraz, widely 
used in horticulture and agriculture, which has been detected in honey and pollen 
stored in hives [150]. It was previously found to increase almost 1,000-fold the toxicity 
of  tau-fluvalinate, and more than 20-fold that of  coumaphos and fenpyroximate [149]. 
Moreover, prochloraz altered the immune-gene expression in honey bees used alone 
and in combination with coumaphos [63, 151]. Recently, Glavinic et al. [138] monitored 
the expression of  15 immune-related genes in adult honey bees, and found that it may 
be affected when food contaminated with prochloraz was consumed by bee larvae 
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(Figure 9). The results were obtained using a combination of  a field and laboratory 
experiment which simulated the conditions where N. ceranae-infected and uninfected 
bee colonies are close enough to crop fields treated with prochloraz. Therefore, a 
great probability of  crop contamination and, consequently, of  the brood intended 
to produce the population of  winter bees is likely. This new experimental approach 
introduced by Glavinic et al. [138] enables the insight into the realistic situation 
when beekeepers move their hives to sunflower forage, which is frequently the last 
one, so the bees are wintered on sunflower-derived food. In the control of  Nosema 
infection the introduction of  good apitechnical practice is proposed, which includes: 
replacement of  the queen with a new, young, promiscuous and healthy one [152], 
feeding colonies with high-quality food (honey and bee bread), additional feeding with 
sugar syrup enriched with pollen and/or supplements, disinfection of  hives and other 
equipment, sterilization of  combs and removal of  excess humidity from the hives. In 
addition, healthy and diseased hives should never be joined. In some countries, the 
antibiotic fumagillin is still used for Nosema control. The effectiveness of  fumagillin 
was recently re-evaluated and proven in both laboratory and field conditions [153, 
154], but may depend on storage, treatment preparation and the quantity consumed by 
bees etc. [153]. In Serbia, like in the majority of  the world, the use of  fumagillin is not 
recommended due to its adverse effects on bees [154, 155], the quality of  bee products 
and consumer health, which result from its inadequate use [44, 45, 47, 156, 157]. 

Figure 9. Heatmap immune-related genes in adult honey bee at different ages (0-, 6-, 9- and 
15-days after honey bee emergence). The colors indicate the average mRNA levels compared 
to average levels of  mRNA in control groups: blue indicates lower and yellow higher levels. 
Range log2 value of  relative expression ratio is indicated in the legend on the right. Each row 
corresponds to one gene transcript and each column, to the expression profile of  treatment. 
The gene names and the corresponding pathway are indicated on left side. Treatments are 
indicated in the scale at the bottom of  the graph (Nosema-infected, CN; Prochloraz-treated, P; 
Prochloraz treated and Nosema-infected, PN). Control group (C) was used for normalization. 
Boxes marked with an asterisk show statistically significant effects of  the treatment on gene 
expression, when p-value was equal or less than 0.05 [138].
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Trypanosomal infections. Of  the two trypanosomatid parasites of  A. mellifera, 
Crithidia mellificae has been known for approximately 50 years and was considered 
widespread until recently, when Lotmaria passim was first described. The latter turned 
out to be predominant when detailed genetic analyses were performed [113]. Some 
investigators [158-162] suggested the possible involvement of  trypanosomatids in 
honey bee health, their immune response and in winter colony losses. Investigations 
into the pathological effects of  C. mellificae and L. passim on honey bees require 
primarily molecular tools for identification of  these trypanosomatids, so Stevanovic et 
al. [112] designed and validated primers capable of  distinguishing between C. mellificae 
and L. passim in conventional PCR, which enables routine research on their prevalence 
and epizootiology [163]. Moreover, primers for a real-time PCR were designed and the 
method optimized, which allows the simultaneous detection and quantification of  L. 
passim and its in-depth field monitoring [114]. 
In the first long-lasting investigation into the presence of  the two Trypanosoma species 
in the world, archived bee samples taken in Serbia (2007-2015) were analyzed, but 
only one species was detected, L. passim, with an annual prevalence of  38.9–83.3%, 
and 62.3% on average in the nine-year period. The same samples were also checked 
for N. ceranae, which was found in most samples with an overall frequency of  95.7%, 
ranging annually from 83.3% to 100%. Only 1.9% was infected with L. passim alone, 
while L. passim and N. ceranae simultaneously parasitized the same host at a fairly high 
rate: 60.5%, (Table 3). What is more, the detection of  L. passim in bees sampled in 
2007 in Serbia is its oldest genetically proven conformation globally and the first one 
in Serbia [112]. 

Table 3. Summarized annual honey bee colony sampling in Serbia and infection status with 
Lotmaria passim and/or Nosema ceranae from 2007 to 2015 [112].

Year2
L. passim 
infection 

only

N. ceranae 
infection 

only
Co-infection Uninfected

2007 0 5 13 0

2008 0 11 7 0

2009 0 5 13 0

2010 1 4 10 3

2011 0 3 15 0

2012 2 2 13 1

2013 0 11 7 0

2014 0 6 12 0

2015 0 10 8 0

Total: 3 (1.9%) 57 (35.2%) 98 (60.5%) 4 (2.5%)

              
1All samples tested negative for N. apis and C. mellificae.

                     218 colonies were sampled each year using 60 adult bees per colony.
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A high positive correlation (p<0.0001) between L. passim and N. ceranae infection 
levels pointed to their similar annual dynamics. Significant differences (p<0.05) in 
infection levels with both species between months implies the seasonal character of  
their prevalence. Highest parasite burdens with N. ceranae and L. passim were detected 
in forager bees sampled in winter and lowest in those taken in mid-summer [114]. 
Lower activity of  superoxide dismutase (SOD), increased activities of  catalase (CAT) 
and glutathione S-transferase (GST) and higher concentrations of  malondialdehyde 
(MDA) in the season, imply that L. passim infection induces oxidative stress, which may 
negatively influence the condition and productivity of  bees, and, consequently, render 
beekeeping less economical [164].

General management in the apiary

Apitechnical practice today relies on depriving bees of  excessive amounts of  honey. 
The basic principles of  this idea date from the 1960s, in absolutely different conditions 
regarding climate, floristic diversity and agrotechnique. The climate has changed 
globally: there is less capillary humidity in the soil due to long-lasting periods of  
draught and recession of  ground waters, which resulted in the decline in the diversity 
of  melliferous plants. Moreover, global agricultural chemisation as well as chemical 
apitechnical measures aimed at the control of  bee pathogens in the colony, result in 
contamination of  in-hive products [84, 165, 166]. Care should be taken to place the 
apiaries in the areas with ample forage and clean water. The vicinity of  the forage 
and the numbers of  bee colonies in the area per square kilometer hugely influence 
bee health and the production and reproductive capacities of  bee colonies [23]. The 
distance between apiaries should be at least 1.5 km, to avoid competition for food 
collection, regardless of  the quality of  the forage, which means that the overpopulation 
of  melliferous areas with hives should be avoided [167].
Technical revolution and the development of  electric and communication systems 
strongly influence the orientation of  bees when searching forage and returning to 
hives, the development of  brood and the colony as a whole. Thus, care must be taken 
when deciding where to place apiaries: they should be far from overhead power lines 
and base radio stations [168-170]. 
Inadequate bee feeding with sugar syrup in order to make up for insufficient food 
reserves in years of  famine, may also result in compromised condition and health of  
bee colonies and, finally, to colony losses. This is why beekeepers should know how 
to prepare bee food and when to provide bees with it. Sole sugar is a “necessary evil”, 
and literature data suggest that it is much better to prepare and apply sugar-honey 
syrup (e.g. 7:3 sugar-honey ratio). The presence of  honey, which contains a variety 
of  active components, helps summer bees to transform it into the form nutritionally 
most useful to the bees. Beekeepers should know that bee feeding is sensible at the end 
of  summer (e.g. in Serbia 1 August - 15 September), when there are enough summer 
bees, which are the only ones capable of  transforming syrup into a satisfactory form 
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for bee feeding. The use of  supplements with sugar syrup should not be avoided, 
since they provide sufficient amino acids, peptides, micro- and macroelements which 
are absent from pure sugar syrup [18]. The use of  supplements may prevent energetic, 
immune and oxidative stress in bees, and thus prevent losses in apiaries [129, 171-174]. 
The presence of  a young, healthy bee queen in the hive guarantees the development of  
healthy bee colonies and successful beekeeping [131, 175]. Suitable pathogen control 
in hives, primarily of  the bee mite V. destructor, with effective, registered varroacides 
is also a prerequisite for maintaining bee colonies in a good health condition. In 
addition, a strong link was detected between colony losses and beekeepers’ education 
and training: professionals were capable of  keeping colonies free from diseases, 
unlike hobbyists [12, 70]. Professionals promptly detected symptoms, especially those 
of  American foul brood or Varroa infestation, and timely applied control measures, 
contributing to the survival of  their colonies. This was the first time that scientists 
focused attention on the impact of  apiculturists and beekeeping practices on colony 
losses. The same authors commented that the introduction of  a bee killer, Varroa 
mite, to Europe at the beginning of  1980s, did not result in increased colony losses. 
This was explained by the fact that beekeepers efficiently adopted measures to combat 
against the mite [12].

concLuSIonS

Scientific consensus has been reached that colony losses (CCD) are a multifactorial 
issue [3, 4, 6], which follows various conditions, but, according to our observations, 
it develops through a sequence of  steps. Firstly, various non-specific factors (e.g. 
climate changes, agrochemisation and inadequate food) decrease the strength of  the 
colonies; apitechnical faults (depriving bees of  too much honey and a consecutive 
addition of  large quantities of  sugary food, inadequate treatments of  colonies 
mainly against V. destructor, high stress and exhausting of  bees, wintering colonies on 
honey contaminated with pesticides – sunflower honey, bad timing for wintering the 
colonies etc.). Such colonies easily become eligible for bacterial, microsporidial and 
trypanosomal infections. Manifested nosemosis combined with Lotmaria infection and 
latent American foulbrood infection, additionally exhaust bee colonies and impair the 
immune system of  the bee [176-179]. Finally, inadequate anti-varroa strategies lead 
to significant health problems in bees and the spread of  viruses for which Varroa is a 
vector, and/or activator. The whole process is a path prepared for the manifestation 
of  virus infections. This has been supported by the results of  our Laboratory, which 
confirmed high level of  viruses in samples of  diseased colonies accompanied by heavy 
loads of  N. ceranae spores. The fact that in colonies with disease symptoms more 
spores were detected than in dead colonies, supports our hypothesis that after the 
Nosema-infection peak (when the immunity is lowest) bee viruses are activated and 
gradual decrease in Nosema load occurs. Viruses, already present in hives in Serbia [68, 
69], are “waiting for the time of  decreased immunity”, become the ultimate executors 
of  bee colonies, often leading to colony losses.
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Given that this is a multifactorial issue, recommended solutions to the problem consist 
of  a sequence of  activities aimed at as many as possible individual factors:
• Compliance with good beekeeping practices and hygienic measures, both in the 

apiary and the hives, as well as in the facilities where beekeeping material, equipment 
and bee products are stored

• Positioning the apiary to places with ample melliferous plants and clean water
• Avoiding areas where pesticides are used intensively, which may, if  present in nectar 

and pollen, enter the hive and harm bees’ health and leave residues in the bee 
products

• Breeding healthy autochthonous bee colonies with young and healthy bee queens 
and compliance with bee selection programmes

• Providing enough quantities of  honey, pollen and bee bread for colonies during 
winter

• The remaining honey, pollen, bee bread from hives which suffered from colony loss 
is not to be used for feeding healthy colonies. If  the bees do not provide enough 
food, the shortage should be compensated with honey-sugar syrup or sugar syrup 
with the addition of  supplements

• Beekeeping today is impossible without acaricides to get rid of  Varroa mites. 
Anti-varroa treatments should be done with registered preparations, applied in 
the adequate period of  the year. Combinations of  preparations may be used to 
increase the efficacy, taking into consideration the interactions between them.
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U POTRAZI ZA UZROCIMA I REŠENJIMA PROBLEMA 
GUBITAKA  PČELINJIH DRUŠTAVA

STANIMIROVIĆ Zoran, GLAVINIĆ Uroš, RISTANIĆ Marko, ALEKSIĆ Nevenka, 
JOVANOVIĆ Nemanja, VEJNOVIĆ Branislav, STEVANOVIĆ Jevrosima

Gubici pčelinjih društava, uključujući one izazvane sindromom CCD, predstavljaju ur-
gentan problem savremenog pčelarenja koji privlači pažnju kako pčelara, tako i naučne 
javnosti. CCD se karakteriše odsustvom odraslih pčela u košnici u kojoj ostaje malo 
radilica sa maticom, veoma narušenim odnosom između količine legla i broja radilica 
u korist legla, uz prisustvo više nego dovoljno hrane. Grabež i štetočine koje obično 
napadaju oslabljena društva izostaju. U ovom radu prodiskutovani su uzroci gubitaka 
pčela, kao i mere prevencije. Analizirani su sledeći faktori koji dovode do gubitaka 
društava: nedostatak visokokvalitetne hrane (polena i meda); infestacija parazitima, 
naročito vrstom Varroa destructor, i mešovite virusne infekcije; bakterijske infekcije 
(američka i evropska trulež pčelinjeg legla), gljivične infekcije (nozemoza i askosferoza) 
i infekcije tripanozomama (lotmarioza); i, najzad, generalni manadžment na pčelinjaku. 
Preporučene su određene preventivne mere: (1) obezbeđivanje visokokvalitetne paše 
i čiste vode, (2) izbegavanje „šećerizacije“, tj. preterane primene šećernog sirupa, (3) 
zadovoljenje nutritivnih potreba društva, (4) kod prihranjivanje pčela, treba voditi 
računa o vremenu davanja prihrane i njenom sastavu, izbegavati čist šećerni sirup koji 
u preteranim količinama može da dovede do energetskog i oksidativnog stresa, (5) 
kada postoji nedostatak prirodne hrane – u medištu i plodištu – koristiti šećerni sirup 
sa prirodnim/veštačkim suplementima da bi se izbegla proteinska glad, (6) organi-
zovana kontrola V. destructor u društvima je obavezna zbog vektorske uloge krpelja, i 
(7) neophodno je pridržavati se higijenskih i sanitarnih mera i principa dobre pčelarske 
prakse i menadžmenta na pčelinjaku. Da zaključimo, sve preventivne mere se izvode 
u skladu sa zakonskom regulativom koja se odnosi na redovnu prolećnu i jesenju kon-
trolu zdravlja pčela. Sve kontrole treba da obavljaju licencirani doktori veterinarske 
medicine i predlože adekvatne tretmane ukoliko je to neophodno.


